PLL Block Diagram

Linear Model

$$G(s) = K_{PD} K_{VCO} \frac{\omega_p}{s(s + \omega_p)}$$

Closed loop gain

$$H(s) = \frac{\phi_{out}}{\phi_{in}} = \frac{G(s)}{1 + G(s)} = \frac{K_{PD}K_{VCO} \frac{\omega_p}{s(s + \omega_p)}}{1 + K_{PD}K_{VCO} \frac{\omega_p}{s(s + \omega_p)}} = \frac{K_{PD}K_{VCO} \omega_p}{s^2 + \omega_p s + K_{PD}K_{VCO} \omega_p}$$

→ 2nd order LPF!

$$H(s) = \frac{\phi_{out}}{\phi_{out}} = \frac{K_{PD}K_{VCO}\omega_p}{s^2 + \omega_p s + K_{PD}K_{VCO}\omega_p} \qquad |H(s)| = \left|\frac{\phi_{out}}{\phi_{in}}\right|$$

Note that input and output are 'phase'.

What does ω mean in x-axis?

In LPF,

In PLL,

$$H(s) = \frac{\phi_{out}}{\phi_{in}} = \frac{K_{PD}K_{VCO}\omega_p}{s^2 + \omega_p s + K_{PD}K_{VCO}\omega_p}$$

2nd order system
$$H(s) = \frac{a_2 s^2 + a_1 s + a_0}{s^2 + (\omega_0 / Q)s + \omega_0^2}$$

$$\omega_0 = \sqrt{\omega_P K_{PD} K_{VCO}}$$

 $\omega_0 = \sqrt{\omega_p K_{PD} K_{VCO}}$ Use ω_n , natural frequency ($\omega_n = \omega_0$)

$$Q = \sqrt{\frac{K_{PD}K_{VCO}}{\omega_P}}$$

 $Q = \sqrt{\frac{K_{PD}K_{VCO}}{\omega_P}} \qquad \text{Use damping factor } \zeta = \frac{1}{2Q} = \sqrt{\frac{\omega_P}{K_{PD}K_{VCO}}}$

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \qquad \frac{\omega_{out}}{\omega_{in}} = \frac{s\phi_{out}}{s\phi_{in}} = \frac{\phi_{out}}{\phi_{in}} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Damping factor dependece
$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$\omega_n = 2\pi$$

$$\xi = 0.1$$

$$\xi = 0.3$$

$$\xi = 0.7$$

$$\xi = 1.5$$

Natural frequency dependence
$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$\xi$$
= 1

$$\omega_n = 2\pi \times 1$$

$$\omega_n = 2\pi \times 2$$

$$\omega_n = 2\pi \times 3$$

$$\omega_n = 2\pi \times 4$$

$$\omega_n = 2\pi \times 5$$

Step response

$$\omega_{in}(t) = \Delta\omega \cdot u(t)$$

$$\omega_{in}(t)$$
 $\Delta \omega$
 t
 DLL
 DLL
 $Delta \omega_{out}(t)$
 DLL
 $Delta \omega_{out}(t)$

$$\omega_{out}(t) = \left\{ 1 - e^{-\zeta \omega_n t} \left[\cos(\omega_n \sqrt{1 - \zeta^2} \cdot t) + \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin(\omega_n \sqrt{1 - \zeta^2} \cdot t) \right] \right\} \Delta \omega \cdot u(t)$$

Damping factor dependence: step response

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$\omega_n = 2\pi$$

$$\xi = 0.1$$

 $\xi = 0.3$
 $\xi = 0.7$
 $\xi = 1$
 $\xi = 1.5$

Natural frequency dependence: Step Response $H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$\xi$$
= 1

$$\omega_n = 2\pi \times 1$$

$$\omega_n = 2\pi \times 2$$

$$\omega_n = 2\pi \times 3$$

$$\omega_n = 2\pi \times 4$$

$$\omega_n = 2\pi \times 5$$